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Abstract

Recent studies of HIV RNA in infected individuals show that viral levels vary widely

between individuals and within the same individual over time. Individuals with higher

viral loads during the chronic phase tend to develop AIDS more rapidly. If RNA levels

are correlated with infectiousness, these variations explain puzzling results from HIV

transmission studies and suggest that a small subset of infected people may be responsible

for a disproportionate number of infections. We use two simple models to study the

impact of variations in infectiousness. In the ®rst model, we account for di�erent levels of

virus between individuals during the chronic phase of infection, and the increase in the

average time from infection to AIDS that goes along with a decreased viral load. The

second model follows the more standard hypothesis that infected individuals progress

through a series of infection stages, with the infectiousness of a person depending upon

his current disease stage. We derive and compare threshold conditions for the two models

and ®nd explicit formulas of their endemic equilibria. We show that formulas for both

models can be put into a standard form, which allows for a clear interpretation. We de®ne

the relative impact of each group as the fraction of infections being caused by that group.
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We use these formulas and numerical simulations to examine the relative importance of

di�erent stages of infection and di�erent chronic levels of virus to the spreading of the

disease. The acute stage and the most infectious group both appear to have a dispro-

portionate e�ect, especially on the early epidemic. Contact tracing to identify super-

spreaders and alertness to the symptoms of acute HIV infection may both be needed to

contain this epidemic. Ó 1999 Published by Elsevier Science Inc. All rights reserved.

Keywords: Di�erential infectivity; Staged progression; Reproductive number; Endemic

equilibrium; Stability; Sensitivity

1. Introduction

Newly developed techniques for measuring HIV RNA levels are allowing
researchers to develop a picture of HIV infection patterns. HIV-1 RNA levels
in plasma and serum become extremely high during the 1±2 weeks of acute
primary infection, before there is a detectable immune response [1,2]. These
levels are higher than at any other time during infection. Acute primary in-
fection is followed by a chronic phase. During the chronic phase, HIV RNA
levels drop several orders of magnitude and remain `nearly constant' for years
[3±5], where `nearly constant' includes ¯uctuations that are less than an order
of magnitude up and down for about 90% of the cohort and less than a factor
of 100 for the remaining [4]. Fluctuations may be caused by transient illnesses
and vaccinations. Successful therapy causes a drop in the viral load to a new
level that is maintained until viral resistance develops [6]. Viral levels di�er by
many orders of magnitude between individuals. Those people with high viral
loads in the chronic phase tend to progress rapidly to AIDS, whereas those
with very low loads tend to be slow or nonprogressors [4,5,7,8]. During late
chronic infection, there is a small increase in HIV-1 RNA levels, at most
tenfold, in many individuals [3].

Common sense says that viral levels in serum and plasma are correlated with
infectiousness. If this is the case, then these results on HIV-1 RNA levels can
explain much of the data on HIV transmission in couples. Couples studies have
found that some individuals transfer the infection to their sexual partners after
only a few contacts, but other couples have had thousands of unprotected
contacts without transferring infection [9±12]. A few epidemiological studies
for small cohorts have found that either a partner transferred the virus early in
the course of infection, or it was not transferred at all [13]. Some researchers
have found evidence for increased transmission late in infection [14,15] al-
though others have not [11,13]. Sometimes late-stage transmission does not
occur because of the increased use of protective methods among couples;
however, late-stage transmission occurred infrequently in one study even when
the use of protective methods was controlled for in the data analysis [11].
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These couples studies show that there must be either great variability in the
infectiousness among infected individuals or great variability in the suscepti-
bility of their partners, or both. The HIV-1 RNA data support the idea of
variations in infectiousness and suggest that there are di�erences of many or-
ders of magnitude in viral shedding rates both over time and between indi-
viduals. In this paper, we focus on those possibilities, and neglect variations in
susceptibility. This not only allows us to focus in on the impact of variations in
transmissibility, and keeps the mathematics more tractable, but it is also easy
to see that variations in susceptibility will not a�ect the dynamics of an epi-
demic until depletion of the most susceptible groups occurs. However, note
that the CCR5 results [16,17] indicate that some individuals are not susceptible
to infection: since they are a small fraction of the actual population, few
contacts will be with them and these individuals can be accounted for with our
models by simply assuming they do not belong to the susceptible population.

Variations in infectiousness over time can be explained as part of a Markov
chain, or staged-progression (SP), model in which infected individuals se-
quentially pass through a series of stages, being highly infectious in the ®rst few
weeks after their own infection, then having low infectivity for many years, and
®nally becoming gradually more infectious as their immune system breaks
down and they progress to AIDS. This Markov chain model also provides an
explanation for the very low progression rates to AIDS in the ®rst few years
after infection and allows for a good ®t to the data for the distribution of the
time from infection to AIDS [18]. Many modelers and statisticians have studied
the SP hypothesis (see Refs. [18±25]), ®rst proposed because of early studies
indicating that viral load in the bloodstream increases late in infection, as in-
dividuals begin to show signs of impaired immunity [26,27] and indications of
virus in the bloodstream before there is an antibody response [28,29].

In this paper we study this SP hypothesis further, using a simple model.
However, the HIV-1 RNA data show that the SP hypothesis is incomplete.
Infected individuals have di�erent levels of virus after the acute phase, and
those with high levels progress to AIDS more rapidly than those with low
levels. We separate the issues by proposing a new model that only accounts for
di�erences between infected people, and we refer it to as a di�erential infect-
ivity (DI) model. In our simple DI model, individuals enter a speci®c group
when they become infected and stay in that group until they are no longer
involved in transmission. Their infectivity and progression rates to AIDS de-
pend upon which group they are in. In a future paper, we will examine what
happens when the two processes are combined into a DISP model in which
individuals both go through stages and have intrinsic di�erences in viral loads
and progression rates.

We derive explicit formulas for the reproductive numbers and the endemic
steady states for the DI and SP models, including the fraction of infections
being caused by each group at equilibrium. By properly de®ning the mean
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duration of infection and the mean transmissibility of infected individuals, we
express all of our formulas for the reproductive number and endemic states in
the same and easily interpreted form for both models. We determine a baseline
set of parameters for both models and use these formulas and numerical
simulations of the transient dynamics to study which groups in each model are
causing the bulk of the infections at di�erent points in time. For the SP model,
this provides further insight into the results in Refs. [21,30]. Their numerical
simulations showed that when partner acquisition rates are high, the bulk of
the infections early in the epidemic are caused by those in the acute infectious
stage. Our results indicate that this is also the case at fairly moderate partner
acquisition rates and that as the epidemic progresses, the late-stage becomes
more important to disease transmission than the early acute stage. We also
show that a small number of individuals who are highly infectious during the
chronic stage can have a disproportionate impact on the epidemic, even if they
have a short life expectancy.

Note that di�erential infectiousness was studied in Ref. [31] for diseases
transmitted by casual contact, which have a di�erent mathematical structure
than sexually transmitted disease models. That study also considered the im-
pact of superspreaders, but from a di�erent perspective.

2. The DI model

2.1. The model formulation

In order to examine only one question at a time, we assume that the sus-
ceptible population is homogeneous and we neglect variations in susceptibility,
risk behavior, and many other factors associated with the dynamics of HIV
spread. We also assume that the population we are studying is a small, high-
risk subset of a larger population. The larger embedding population is rela-
tively free of HIV and provides a constant source of uninfected individuals
entering the high-risk population we are studying. For example, we might
apply this model to the homosexual population of a major American city or to
a group of highly active heterosexuals. When no virus is present in the popu-
lation, the population of susceptible individuals, S, has a constant steady state,
S0. This equilibrium is thus assumed to be maintained by a constant in¯ow and
out¯ow during which time each individual remains in the population an av-
erage of lÿ1 years; where l is the removal rate due to natural death in the
absence of HIV infection, migration, and changes in sexual behavior. Indi-
viduals are infected by HIV at a per capita rate k�t�.

The infected population is subdivided into n subgroups, I1; I2; . . . ; In. Upon
infection, an individual enters subgroup i with probability pi and stays in this
group until becoming inactive in transmission, where

Pn
i�1 pi � 1. We assume
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that the infection subgroup is not a transmissible property of the HIV virus
because there is no evidence to the contrary. In fact, one study has shown that
some characteristics of the virus (resistance to AZT) can change between in-
fector and infectee [1]. By treating the susceptible population as a homoge-
neous group, we also neglect, for simplicity, any signi®cant links between
susceptibility and infectiousness or progression rates that may occur due to
human genetics such as CCR5.

The rate, mi, of leaving the high-risk population because of behavior changes
that are induced by either HIV-related illnesses or a positive HIV test, and
subsequently the desire not to transmit infection, may depend on the subgroup,
since there may be a link between the amount of virus being shed by an infected
individual an how quickly an individual gets sick. Let A denote this subgroup
of removed people. People in A are assumed to die at a rate dPl. These as-
sumptions de®ne the DI model:

dS
dt
� l�S0 ÿ S� ÿ kS;

dIi

dt
� pikS ÿ �l� mi�Ii; i � 1; . . . ; n; �1�

dA
dt
�
Xn

j�1

mjIj ÿ dA:

The rate of infection, k, depends upon the transmission probability per
partner, bi, of individuals in subgroup i, the proportion of individuals in the
subgroup, Ii=N , and the number of partners of an individual per unit time, r.
Simple random mixing leads to

k�t� �
Xn

i�1

ki�t�;

ki�t� � rbi
Ii�t�
N�t� ; �2�

where N � S �Pn
j�1 Ij.

Since we wish to examine the relative importance of each infection group in
maintaining the chain of transmission, we will be concerned with the relative
fraction of individuals being infected by each group, which we call the relative
impact of the group. This fraction is

qi�t� �
ki�t�
k�t� �

biIiPn
j�1 bjIj

: �3�
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2.2. Mathematical analysis of the model

Because transmission by individuals in group A has been neglected under
our assumptions, the transmission dynamics of Eq. (1) are determined by the
transmission dynamics of the ®rst two equations in systems (1) and (2).

2.2.1. The reproductive number
The infected subgroups are linked in such a way that one infected subgroup

cannot go to zero unless all of the infected subgroups go to zero. Therefore,
system (1) has only two kinds of equilibria: the infection-free equilibrium given
by �S � S0; Ii � 0� and the endemic equilibrium given by
�S � S� > 0; Ii � I�i > 0�. Analyzing the stability of the infection-free equilib-
rium gives the epidemic threshold condition, which speci®es the conditions
under which the number of HIV-infected individuals will increase when there
are a small number of them or will decrease to zero otherwise. A simple sta-
bility analysis of Eq. (1), done by linearizing around the infection-free
equilibrium and determining when the largest real part of the eigenvalues
crosses zero, gives the threshold condition, characterized by the reproductive
number

R0 � r
Xn

i�1

pibi

l� mi
: �4�

If R0 < 1, the infection-free equilibrium is locally asymptotically stable. If
R0 > 1, the infection-free equilibrium is unstable, and an initial infection will
spread. The proof is given in Appendix A.

We can rewrite the reproductive number in a more intuitive and useful way
as the product of the mean duration of infection, the average number of
partners per unit time, and the mean probability of transmission per partner.
This form for R0 holds for all of the models studied here and allows to it be
reinterpreted as the average number of individuals that a single infected indi-
vidual will infect in a naive population.

For the DI model, the mean duration of infectiousness of an infected in-
dividual in group i is 1=�l� mi�. Because pi of the infected individuals enter
group i, the mean duration of infectiousness for all infected individuals in this
model is

�sD �
Xn

i�1

pi

l� mi
: �5�

There are several ways that we could de®ne the mean probability of trans-
mission from an infected individual in the population. We de®ne it so that the
average number of partners per unit time, r, times the mean probability of
transmission gives the average number of individuals an infected individual will
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infect throughout the course of infection, given that none of his partners are
infected before he has contact with them. Thus, the probability of transmission
is weighted by the duration of infection,

�bD � 1

�sD

Xn

i�1

pibi

l� mi
: �6�

These de®nitions give

RD
0 � r �bD�sD:

2.2.2. Endemic equilibrium
To de®ne an explicit formula for the endemic equilibrium, �S�; I��, when

R0 > 1 we set the right-hand sides of Eq. (1) equal to zero. Then,

l�S0 ÿ S�� � kS� � �l� mi�I�i =pi; �7�
which gives

I�i � l�S0 ÿ S�� pi

�l� mi� ; �8�
and then at the endemic equilibrium, the rate of infection is

k� � r
Xn

i�1

bi

I�j
N �
� r
Xn

i�1

bi
l�S0 ÿ S��pi

�l� mi�N � �
l�S0 ÿ S��R0

N �
: �9�

Also, it follows from Eq. (7) that

k� � l�S0 ÿ S��
S�

: �10�
As both Eqs. (10) and (9) hold, N � � R0S�.

Denote the total number of infected individuals by I tot�. Then,
I tot� � S��R0 ÿ 1�. Using Eq. (5), we also have

I tot� �
Xn

i�1

I�i � l�S0 ÿ S���sD;

and hence

S� � l�S0 ÿ S���sD � R0S�: �11�
Solving Eq. (11) for S�, we arrive at

S� � l�sDS0

l�sD � R0 ÿ 1
: �12�

Combining Eqs. (8) and (12), we have

I�i �
lS0�R0 ÿ 1�pi

l�sD � R0 ÿ 1
� �

�l� mi�
� pi�R0 ÿ 1�S�

�sD�l� mi� : �13�
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From Eq. (10) and the expression for S�,

k� � l
S�

S0

 
ÿ l�sDS0

l�sD � R0 ÿ 1

!
� lS0�R0 ÿ 1�

S��l�sD � R0 ÿ 1� �
R0 ÿ 1

�sD
: �14�

It follows from Eq. (11) that we can rewrite the susceptible population as

S� � lS0

l� k�
:

All components are positive at the endemic equilibrium if and only if the
reproductive number R0 is greater than 1. Moreover, the endemic equilibrium is
always locally asymptotically stable whenever it exists, i.e., when it lies in
physical space with all positive components. (The detailed proof is given in
Appendix B.) In summary, we have the following theorem:

Theorem 2.1. There exists a non-zero equilibrium given by Eqs. (12) and (13) if
and only if the reproductive number R0 is greater than 1. If this endemic
equilibrium exists, it is always locally asymptotically stable.

Substituting the equilibrium formula for Ii into the formula for the relative
impact, we get

q�i �
pibi

�l� mi�
Pn

j�1 pjbj=�l� mj�

� rpibi

�l� mi�R0

� pibi

�l� mi��b�s
: �15�

Note that at equilibrium, the fraction of infecteds in each group is inde-
pendent of the per partner contact rate, but numerical studies [32] show that
this is not true early in the epidemic. The larger the contact rate, the more
important the most infectious group is to the early epidemic.

3. The SP model

As in the DI model above, we assume that the susceptible population is
homogeneous and is maintained by the same type of in¯ow and out¯ow. As-
sume that the population of infected individuals are subdivided into subgroups
I1; I2; . . . ; In with di�erent infection stages such that infected susceptible indi-
viduals enter the ®rst subgroup I1 and then gradually progress from subgroup
I1 ®nally to subgroup In. Let ci be the average rate of progression from sub-
group i to subgroup i� 1, for i � 1; . . . ; nÿ 1, and let cn be the rate at which
infected individuals in subgroup In become sexually inactive or uninfectious
due to end-stage disease or behavior changes. Then the dynamics of the
transmission are governed by the following SP model:
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dS
dt
� l�S0 ÿ S� ÿ kS;

dI1

dt
� kS ÿ �c1 � l�I1;

dIi

dt
� ciÿ1Iiÿ1 ÿ �ci � l�Ii; 26i6n; �16�

dA
dt
� cnIn ÿ dA;

where the infection rate k is given by

k �
Xn

i�1

ki;

ki � rbi
Ii

N
: �17�

Here, r is the average number of partners per individual per unit of time, bi is
the transmission probability per partner with an infected individual in sub-
group i, dPl, and N � S �Pn

i�1 Ii. Notice that the transmission by the A
group is neglected just as it was in the DI model. We also de®ne the relative
impact of the group as the fraction of individuals being infected whose in-
fecting partner comes from group i:

qi �
ki

k
: �18�

Like the DI model, the SP model has two equilibria: the infection-free
equilibrium and the positive endemic equilibrium.

By investigating the local stability of the infection-free equilibrium, a
straight-forward calculation shows that the reproductive number can be de-
®ned by

RS
0 � r

Xn

k�1

bkqk

ck � l
; �19�

where we de®ne

qi :�
Yiÿ1

j�1

cj

l� cj
: �20�

When R0 > 1, the infection-free equilibrium is unstable, and thus the
number of infected individuals will grow when a small number of individuals
are infected. The epidemic will die out in the neighborhood of the infection-free
equilibrium when R0 < 1.
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The mean duration of infection for the SP model is

�sS �
Xn

i�1

qi

l� ci
; �21�

where 1=�l� cj� is the average time period that infected individuals, who
survive to infection stage j� 1, spend in infection stage j, or the death-adjusted
expected time in stage j [23]. Because 1=cj is the waiting time in stage j [18] (i.e.,
the mean time that an individual who progresses to stage j� 1 spends in
stage j), cj=�l� cj� is the probability that an infected individual with infection
stage j survives to stage j� 1, and qi is the total probability that an infected
individual survives to stage i.

The mean probability of transmission per partner from an individual during
the course of infection is

�bS �
Xn

i�1

bi � �fraction of time spent in stage i�:
The fraction of time spent in stage i during the course of infection is the

probability of reaching stage i times the mean time spent in stage i once it is
reached, all divided by the mean duration of infection. The probability of
entering stage i is the probability of entering the previous stage, iÿ 1, times the
probability ciÿ1=�ciÿ1 � l� of entering stage i, given that the individual has
entered stage iÿ 1. Thus, the probability that an infected individual reaches
stage i is

Qiÿ1
j�1 cj=�cj � l�, or qi. Because the mean time spent in stage i is

1=�ci � l�, we obtain

�bS � 1

�sS

Xn

i�1

biqi

ci � l
: �22�

These de®nitions allow us to rewrite the reproductive number formula for
the SP model in the same form as that of the DI model:

RS
0 � r �bS�sS ;

or, in other words, it is the average number of individuals an infected indi-
vidual will infect early in the epidemic when none of his or her partners are
infected by someone else.

In Appendix C we show that the endemic equilibrium for the SP model can
be explicitly expressed by

S� � l�sSS0

l�sS � RS
0 ÿ 1

;

I�i �
S��RS

0 ÿ 1�qi

�sS�ci � l� : �23�
It follows from Eq. (23) that there exists a unique endemic equilibrium if and
only if R0 > 1.
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Then, the total number of infected individuals is

I tot� �
Xn

i�1

I�i � S��RS
0 ÿ 1�

and

k� � r
N �
Xn

i�1

biI
�
i �

r�RS
0 ÿ 1�

RS
0�sS

Xn

i�1

biqi

ci � l
� RS

0 ÿ 1

�sS
: �24�

Finally, we wish to know the fraction infected by each group once equi-
librium is reached:

q�i �
rbiIi�sS

S�RS
0�RS

0 ÿ 1� �
rbiqi

�l� ci�RS
0

: �25�
Table 1 consolidates our results for both DI and SP models.
Note that all of these formulas have the same form, with pi and mi from the

DI model being replaced by qi and ci for the SP model formulas. However,
while it could be argued that mi and ci are both progression rates and thus play
somewhat similar roles in both models, qi is quite di�erent from pi. Not only is
qi a derivative quantity, but q1 � 1, so that the sum of the qi is larger than one,
whereas the pi sum to one. Thus we should not let the similarity of form fool us
into thinking the two models are the same.

4. Model simulations

4.1. Parameter estimation

Here we review studies and data on the parameters for both the DI and SP
models and obtain estimates for the numerical simulations in the next section.
Many of these parameters have wide ranges of uncertainty. We choose a
baseline set of parameters that lies in the center of this range. In this paper we

Table 1

Formulas for the two models

Name DI model SP model

R0 r�s�b r�s�b
�s

Pn
i�1 pi=�l� mi�

Pn
i�1 qi=�l� ci�

�b
Pn

i�1 pibi=�s�l� mi�
Pn

i�1 qibi=�s�l� ci�
k� �RD

0 ÿ 1�=�sD �RS
0 ÿ 1�=�sS

S� lS0=�l� k�� lS0=�l� k��
I�i piS�k

�=�l� mi� qiS�k
�=�l� ci�

I tot� S��R0 ÿ 1� S��R0 ÿ 1�
q�i pibi=�l� mi��b�s qibi=�l� ci��b�s
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examine the sensitivity of the models to one of our parameters, the probability
of transmission per contact; in Ref. [32] we will present sensitivity studies for
the other parameters.

4.1.1. Parameters common to both models
Natural death rate. We split up the removal rate, l, into the natural death

rate, d, and the rate, a, at which individuals leave the high-risk population due
to migration and changes in sexual behavior. Thus l � d � a. We assume that
individuals in our population are young adults and can expect to live an av-
erage of 50 more years. Thus d � 0:02 yrÿ1.

Mean time in the high-risk group. The number of years that people engage in
high-risk behavior is unknown and probably varies greatly between popula-
tions. We take a baseline of 20 yr. In Ref. [32] we will study how changing aÿ1

from 5 to 50 yr a�ects our model results. Note that increasing a decreases the
mean time that an individual spends in the sexually active population in dif-
ferent ways for each model. Thus it implies that the two models will have
di�erent reproductive numbers as soon as a 6� 0 unless we modify other pa-
rameters to hold �s constant.

Mean duration of infection. One of the best statistical analyses of progression
to AIDS is that in Ref. [18], where the authors used a staged-progression model
and found a mean time from infection to AIDS of 8.6 yr. However, this study
was done in 1989 and thus did not have access to data on long-term pro-
gressors, since the epidemic had not been around long enough, and could not
take into account the impact of treatments that have been developed since
1989. A careful statistical analysis of the duration of infection is outside of the
scope of this paper, but we look at data from two recent papers [4,33] and
make rough estimates of their progression rates. All of our estimates came out
longer than 8.6 yr, since they included data on longer-term progressors than
any people included in Ref. [18]. This increase is consistent with past trends:
statistical estimates for the mean duration of infection have tended to increase
as data has accumulated on long-term survivors, and new treatments have
increased life expectancies.

In a recently published study on HIV-RNA levels [4], the authors present
Kaplan±Meier curves for times from infection to AIDS for each of their four
groups. By reading numbers o� of their curves and weighting them by the
fraction of the population in each group, we obtained a crude estimate of 19 yr
from infection to AIDS. This estimate is so much longer than that in Ref. [18]
that we did not use it. However, we did use the relative progression rates for
each group in Ref. [4] for the DI model (see below).

In a more recent study [33], the population was divided according to HIV
RNA plasma levels. Most participants were already infected at entry, and the
start point used in their analysis was either 1 or 1.5 yr after entry (the time when
the ®rst reliable plasma sample was taken). The authors provided a table of the
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fraction of participants with AIDS at 3, 6, and 9 yr after the start date. This
study found a similar increase to that in Ref. [4] in progression rates with each
increase in RNA levels. Those progression rates almost doubled for each factor-
of-three increase in RNA levels. We are assuming that people were infected 1.5
yr before entering the study, estimate mi for each RNA group separately, and
add in the natural death rate to obtain a mean time from infection to AIDS of
between 9 and 13.5 yr for this population, depending on which of the data
points we use (of the 3, 6, and 9 yr). This lies between the 8.6 yr of Ref. [18] and
the 19 yr of Ref. [33]. For our baseline value, we take �s � 12 yr, which is in the
middle of all of these estimates. Note that this estimate assumes that a � 0,
since these studies keep people in the cohort, regardless of their sexual behavior.

Looking at the Kaplan±Meier curves shows one reason for the large vari-
ation in our estimates from those in Ref. [33]: the population is not developing
AIDS in an exponential manner. Instead, progression rates are very small early
in infection and gradually increase. Our staged progression model can account
for this, but the DI model cannot.

Transmission probability and partner acquisition rate. The probability of
transmission per partner depends upon the average number of contacts per
partner and the mean probability of transmission per contact.

Although studies on sexual behavior are di�cult, it appears that partner
acquisition rates vary a great deal between communities and that HIV can
spread even in populations with fairly low values of r. Highly active subpop-
ulations of homosexual men and prostitutes have reported hundreds of sex
partners per year, whereas in African populations in which HIV has spread,
reported partner acquisition rates may be as low as 1 or 2 per year. We take our
baseline value of r to be 5 partners per year, since this is typical of many
populations in which HIV spreads. However, since r can vary so much, in Ref.
[32] we check the sensitivity of our model results to values of r ranging from 1
to 100 partners per year.

We use z as the transmission probability per sexual contact. Estimates of z
range from 0.0003 (lowest value estimated for female to male) to 0.08 (highest
value estimated for male-to-male transmission) [15]. This range is large, and
our models are very sensitive to this parameter. We take z � 0:003 as our
baseline value, partly because it is close to the value found in a number of
couples studies, partly because it lies on the low side of the possible range for z,
and partly because the reproductive number ends up near 2, given all of our
other baseline choices.

If n is the number of contacts with a partner, then the average probability of
transmission per partner is �b � 1ÿ �1ÿ z�n. There is no known relationship
between the average number of contacts per partner and the number of part-
ners per year. In general, the number of contacts per partner will decrease as
the partner acquisition rate, r, increases. We choose a simple function with this
property to be n � 104=r � 1. Then �b � 1ÿ �1ÿ z�104=r�1

. We are assuming
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that people with few partners have 2 contacts per week and people with many
partners have slightly more than one contact per partner. At the baseline value
of r, this gives a mean of 21.8 contacts per partner, and �b � 0:063.

Since z is in the interval �0:0003; 0:08�, in a population with 30 partners per
year, �b lies in the range 0.0013 to 0.31, and the reproductive number for both
models ranges from 0.48 to 112 when �s � 12 years. In a population with 3
partners per year, �b lies between 0.011 and 0.95, giving a reproductive number
of 0.38 to 51. Notice how the variability in estimates for the probability of
transmission leads to such a large uncertainty in the reproductive number and,
thus, in the dynamics of the epidemic, while the dependence of �b on r prevents r
having such a large e�ect on the epidemic, especially at lower values of z. If we
make a di�erent assumption about how the number of contacts per partner
varies with r, then, of course, we would get more or less sensitivity of our re-
sults to r. In fact, in Ref. [32] we show that if n drops more rapidly as r in-
creases, the reproductive number can be nonmonotonic.

In both scenarios, if the transmission probability is actually at its lowest
estimated value, then the epidemic will not spread, whereas at its highest value,
the epidemic will spread very rapidly and be very di�cult to stop. This is one
reason why condom usage, which can reduce the probability of transmission
per contact by 90% or more, can have such a dramatic e�ect on the spreading
of the epidemic.

Infectivity of the subgroups. Our models, and the theoretical results we de-
rived from them, are not dependent on the assumption that RNA viral levels in
serum and transmissibility of the virus are correlated. However, we now make
this assumption in order to derive relative values for the subgroups in each
model to use in our numerical studies. Although it seems highly plausible that
viral levels in serum and plasma are correlated with infectiousness, it is im-
portant to keep in mind that such a correlation does not necessarily exist.
Assuming that it does assumes that serum levels are correlated with membrane
and secretion levels, and that those in turn somehow determine transmissibility
itself. Newly developed lab techniques allow researchers to begin to measure
HIV levels in semen, membranes, and cervical and vaginal ¯uids and to ex-
amine whether or not these levels correlate with plasma and serum levels. As
pointed out by Royce et al. [15] in their review of sexual transmission, results
on this correlation to date are inconsistent: some studies, such as those in Refs.
[34±36], have found a correlation; others, such as those in Ref. [37], have not.

There is other evidence that HIV serum and plasma levels or individual
variations a�ect transmission, but it is less direct. Maternal HIV-1 RNA levels
a�ect the probability of transmission to the fetus [38]. Occasional reports of
superspreaders (individuals who have infected large numbers of partners) (see
Refs. [9,39], and the discussion in Ref. [10]) or the odd case of a dentist ap-
parently infecting several patients [40] provide additional support for the hy-
pothesis that some individuals are highly infectious over long periods of time.
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It seems reasonable to assume that genetic factors can partially determine an
infected individual's infectiousness, especially since they are known to partly
determine susceptibility. Other factors, such as viral strain, age (which a�ects
progression rates [4,41]), the presence of other sexually transmitted diseases
[42], smoking [43], general health, individual chemistry, and pregnancy [44],
may a�ect an individual's ability to transmit HIV.

4.1.2. Parameters speci®c to the DI model
The remaining parameters for the DI model are obtained from the HIV

progression study reported in Ref. [4], where the authors measured HIV RNA
levels in a long-term study of hemophiliacs. They used serum samples that had
been archived between 12 and 36 months after their estimated seroconversion
dates. This time interval was chosen in order to measure levels during the
chronic HIV RNA phase: after 12 months the initial pre-antibody peak was
over, and prior to 36 months the increase in levels at the end of the chronic
phase had generally not begun.

O'Brien et al. [4] also divided the subjects according to HIV levels. Nineteen
individuals had 0±999 copies/ml, eighty-two had 1000±9999 copies/ml, ®fty-®ve
had 10 000±99 999 copies/ml, and nine had 100 000+ copies/ml. Of the last
group, one person had more than a million copies/ml. They presented Kaplan±
Meier survival curves for these four groups. Survival patterns were dramati-
cally di�erent for each of the groups, with the group having the highest viral
load dying the most quickly. Assuming exponential decay for each population,
crudely estimating the decay rate from their graph showed that the death rate
nearly doubled for each factor-of-10 increase in viral loads.

O'Brien et al. [4] then argued that viral levels ¯uctuated very little within an
individual during the chronic phase in the absence of treatment (which can
decrease viral levels by several orders of magnitude). For 62 of their 165
subjects, more than one sample was available. The di�erence in HIV-1 RNA
levels between specimens was less than a factor of 10 for 53 of the subjects and
less than a factor of 100 for the remaining 9 individuals. Of course, this also
says that the picture of constant viral load is an oversimpli®cation: viral loads
¯uctuate some in all individuals [6].

Following the study in Ref. [4], we divide the infected population into four
groups ranging from the highest viral load to the lowest. We assume a linear
connection between infectivity and viral load so that each group's infectivity
decreases by a factor of 10 (and study the sensitivity of the model to this as-
sumption). Rounding these numbers, we yield

p � �0:05; 0:33; 0:5; 0:12�T; bD � �1000; 100; 10; 1�TbD;

where the scalar parameter bD is to be chosen so that the mean probability of
transmission is what we want it to be. Here we have used matrix transpose
notation to give the numbers.
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When we used the Kaplan±Meier curves from [4] to estimate progression
rates for each of their four groups, we obtain m � �0:1; 0:05; 0:03; 015�T yrÿ1:
This gives a mean duration of infection of 18.6 yr. To modify this to give the
mean of 12 yr that we have assumed, we increase each mi by a factor of 1.92 so
that

m � �0:19; 0:096; 0:058; 0:028�T yrÿ1

when these baseline parameters are substituted into Eq. (5) with a � 0. Note
that as soon as a > 0, �sD is less than 12 yr. Substituting all of the above pa-
rameter choices into Eq. (6) gives a baseline mean probability of transmission
per partner (with a � 0:05 yrÿ1) of

�b � 59:0bD:

Specifying �b then allows us to calculate the appropriate value for bD.

4.1.3. Parameters speci®c to the SP model
For the SP model, we assume that the population goes through 4 stages: an

early, highly infectious pre-antibody phase, two chronic stages at low infec-
tiousness, and a ®nal stage at higher infectiousness. According to [2,6,21], the
peak in viral loads occurs 2 to 6 weeks after infection in the majority of pa-
tients, after which viral levels decline rapidly over the next 1 to 2 weeks. Viral
loads at their peak may be as high as 106 or 107 copies/ml. From the data
presented above, we know that after this early phase viral loads are rarely this
large. In fact, the majority of infected individuals have between 103 and 104

copies/ml. Late in infection, viral loads may rise but usually by less than ten-
fold. Therapy tends to reduce viral levels, but often only temporarily.

We need to choose our parameters so that the mean duration of infection is
12 yr when a � 0. If we take 4 weeks as the duration of the initial stage, 3 yr as
the mean duration of the ®nal and more infectious stage, and assume the
middle two stages to have an equal duration, with a rate of moving on to the
next stage denoted by cm, then

c1 � 13 yrÿ1; c2 � c3 � cm; c4 � 0:333 yrÿ1:

Substituting these values into Eq. (20) for qi, setting �s � 12 yr, and then
solving Eq. (21) gives

cm � 0:177 yrÿ1:

Thus each of the middle stages lasts an average of 5:7 yr.
Given the data on viral loads, we assume for the SP model that

bS � �100; 1; 1; 10�TbS ;

where bS is a scalar parameter that determines the mean probability of trans-
mission. Using the ci obtained above, we get �b � 3:345bS .
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4.1.4. Summary
We have chosen the baseline parameters for each model to represent our

best estimate for ®tting the model to the current HIV epidemic in the United
States. These parameters, de®ned in Table 2, are selected based on the analysis
of epidemiological data presented in Sections 4.1.1±4.1.3. For both the DI and
SP models, the mean duration of infection is �s � 12 yr, which is obtained by
setting a � 0. However, the mean time an infected person stays in the active
population (a � 0:05) is shorter in the DI model (ŝD � 7:3 yr) than in the SP
(ŝS � 8:26 yr). Therefore, the reproductive number for the DI model is smaller
than for the SP model.

4.2. Numerical simulations

Our goal in these examples is to investigate the relative impact of the in-
fected subgroups in the DI and SP models on the epidemic. Although the two
models were derived using very di�erent assumptions about the biology of
infected individuals, if the mean duration of infection and the mean infectivity
are the same for the two models, then their reproductive numbers and the
numbers of total infected individuals at the endemic equilibrium will be the
same. This implies that, without direct evidence of the manner in which in-

Table 2

Baseline parameters

Initial population size N � S�0� � Itot�0� 1.0

Initial infected population Itot�0� 0.01

Natural death rate d 0.02 yrÿ1

Sexually active removal rate a 0.05 yrÿ1

Total removal rate l � d � a 0.07 yrÿ1

Mean duration of infection (a � 0) �s 12 yr

Partner acquisition rate r 5 partners/year

Mean probability of transmission per contact z 0.003

Mean probability of transmission per partner �b 0.063

DI parameters

Distribution by group upon infection pi (0.05, 0.33, 0.5,0.12)

Progression rates by group mi (0.19, 0.096, 0.058,0.028)

Relative infection rates bi �103; 102; 10; 1�bD

Mean duration of infectivity ŝD 7.3 yr

Reproductive number R0 2.3

bD � �b=59:0 0.00107

SP parameters

Progression rates by group ci �13:0; 0:177; 0:177; 0:333�
Relative infection rates bi �100; 1; 1; 10�bS

Mean duration of infectivity ŝS 8.26 yr

Reproductive number R0 2.6

bS � �b=3:3 0.019
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fectivity varies between individuals, it is not possible to use these two quantities
to tell which hypothesis is valid. However, even when the reproductive num-
bers and endemic equilibrium are the same, the transient behavior and internal
dynamics of the models can be very di�erent.

An added complication in any model with infected subgroups is the sensi-
tivity of the model to the distribution of the initial infected population between
the di�erent subgroups. Di�erent distributions of even a small infected popu-
lation can hasten or delay the onset of an epidemic by several years. We ap-
proximate the natural initial conditions for an epidemic by introducing a very
small infected group (0.01%) into the population and allowing the epidemic to
progress until 1% of the population is infected. At this time, we re-normalize
the population while maintaining the same relative distribution of the infected
population and call this time t � 0. With this approach, we ®nd the model to be
insensitive to the distribution of the initial 0.01% infected population. We
explore this issue in more detail in Ref. [32].

In all the examples, unless we explicitly state otherwise, we use the baseline
parameters in Table 2.

4.2.1. Relative impact of the infected groups on the epidemic
When there are multiple infected subgroups, each infected subgroup has a

di�erent impact on the spread of the disease. In this example, we compare the
relative impact of the infected groups on the epidemic and observe how quickly
these rates converge to their asymptotic values. This example identi®es which
infected groups are driving the epidemic. The hope is that this information may
eventually help guide intervention strategies to slow the epidemic. In particu-
lar, the analysis can be used to compare the sensitivity of the epidemic by
targeting intervention strategies focused on identifying people in the most in-
fectious group in the DI model and the group in the SP model with the acute
infectious period.

We use the relative impact of each infected group, qi�t� � ki�t�=k�t�, to study
how fraction of the infections attributed to each infected group is directly re-
lated to the assumptions about the length of time spent in each group and the
infectivity. In the numerical simulations, we monitor qi�t� directly and study
how quickly these ratios converge to their asymptotic values given by Eqs. (15)
and (25).

DI model: The numerical simulation for the DI model in Fig. 1 demonstrates
how the epidemic converges to the endemic equilibrium. The plot of the
functions qi�t� shows that in the early spreading of the epidemic, the very small
but highly infectious group I1 causes the bulk of the infections. However, as the
epidemic progresses, these individuals develop AIDS more rapidly than the
individuals in the other groups and they have less impact than the larger (but
less infectious) group I2. Interestingly enough, even though group I3 is the
largest group and stays in the population much longer than the ®rst two
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groups, the assumption that they are tenfold less infectious prevents this group
from ever having a major impact on the epidemic. The moderate size and small
infectiousness of group I4 results in this long-lived group playing almost no role
in the epidemic at any time.

SP model: The solution for the SP model in Fig. 2 con®rms the observation
made by Jacquez et al. [21,30] that in the early epidemic almost all infections
for the SP model are due to individuals in the ®rst infection stage. Later on, this
stage becomes less important until eventually the infections transmitted from

Fig. 1. The solution and relative infection rates of the DI model for the baseline parameters (Ta-

ble 2) show how quickly they converge to the equilibrium values (shown by the dashed lines). Note

that the initial relative impact of the infected groups can be di�erent from its asymptotic value. In

fact, in this example the ®rst infected group causes the largest number of infections early in the

epidemic, and after about 25 yr the second infected group becomes the most important in terms of

transmission.
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people in the long lived last stage of the epidemic (Stage I4) dominate. Stages I2

and I3 play less of a role throughout the epidemic.
Comparison: Although the macro dynamics of the total infected populations

for the DI and SP are similar, the internal dynamics of the transmission pro-
cess, as measured by the relative importance of the infected groups, are very
di�erent. These di�erences have signi®cant implications if the models are used
to gain insight into planning intervention strategies. For example, suppose that
the most infectious group could be identi®ed, perhaps through contact tracing,

Fig. 2. The solution and relative impacts of the SP model for the baseline case parameters given in

Table 2. The plot of the populations shows the initial rise and subsequent convergence to the

equilibrium values. Note that the initial relative impact of an infected group can be signi®cantly

di�erent from its asymptotic value. In fact, in this example the relative impact of the ®rst and fourth

infected groups in the SP model switch places, in that early in the epidemic the I1 group causes most

of the infections, and later on the I4 group becomes the most signi®cant. Even though the other two

groups are the largest, they transmit a small fraction of the infections.
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and convinced to change their behavior. In the DI model this would have an
immediate and signi®cant impact on the epidemic. In the early epidemic for the
SP model, the most infectious group is the one in the ®rst infection stage which
is continually being replenished and the impact would be signi®cantly less. On
the other hand, if an approach could be used to identify more people in the
very early stages of the infection, then this would have only a proportional
e�ect on the DI model, but could have a large impact on infections caused by
those in the ®rst stage of the SP model. The insight gained by using a model to
understand the impact of drug therapy to extend the life expectancy of infected
individuals is also sensitive to which model is being used.

4.2.2. Sensitivity to the probability of transmission per contact
When de®ning the baseline parameters, we made the assumption that the

mean probability of transmission per partner is �b � 1ÿ �1ÿ z��104=r�1�
, where z

is the mean probability of transmission per contact. Under this assumption, the
reproductive number increases rapidly with z when it is small, and gradually
levels o�. As pointed out above, z is not well known. Not only are the ranges of
z from any study fairly large, but it also appears that it may vary greatly be-
tween populations. In this example, we demonstrate the sensitivity of both
models to small changes in z.

DI model: Fig. 3 illustrates the extreme sensitivity of R0 for the DI model as
a function of z. At the minimum estimate for z, R0 is below 1, and there is no
epidemic. At the highest estimate of z � 0:08, R0 is 31, and the epidemic is rapid
and devastating. R0 crosses 1 when z � 0:00127. When R0 is near 1, there is a
very small, slow epidemic, but as it increases, there is at ®rst a rapid change in
the behavior of the epidemic, which spreads more quickly and extensively.

Fig. 3. The reproductive number for the DI model is a sensitive function of the mean probability of

transmission per contact z. All the other parameters are the baseline values given in Table 2.
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The sensitivity can be further seen by the wide variations in the progression
of the epidemic in Fig. 4, where we compare (z � 0:002;R0 � 1:56),
(z � 0:003;R0 � 2:31) and (z � 0:004;R0 � 3:06). Once R0 is greater than four
or ®ve, the epidemics all progress similarly by rapidly infecting and depleting
the susceptible population.

Even though z has no impact on the equilibrium fractions of infections at-
tributable to each group, as z increases, group I1 becomes relatively more
important to the early epidemic than the other groups. Group I1 contributes
less and less as the epidemic reaches its peak. For these parameters, most of the

Fig. 4. The solution of the DI model is extremely sensitive to the mean probability of transmission

per contact. The baseline epidemic z � 0:003 (solid line) progresses more rapidly as z increases and

all parameters (except bD) are held ®xed as seen when z � 0:002, bD � 7:23� 10ÿ4 (dashed line),

and when z � 0:004, bD � 1:42� 10ÿ3 (dotted line). The plot of the fractions infected shows the

relative impact of the infected groups for the z � 0:002 (dashed line) and z � 0:004 (dotted line)

cases.
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infections at all times are attributable to groups I1 and I2. Although groups I3

and I4 make up the bulk of infected individuals, they have relatively little to do
with spreading the epidemic.

SP model: Both the endemic states and the transient dynamics of the SP
epidemic are sensitive to z. The susceptible population shown in Fig. 5 at time
t � 20 di�ers by a factor of four when the probability of transmission per
contact is changed by a factor of two.

Fig. 5. The SP model is also sensitive to the partnership acquisition rate z, even when the total

number of contacts is ®xed. In the population plot, the solid curves are the S and I populations for

the baseline case of z � 0:003. The populations are also shown for the cases when z � 0:002,

bS � 0:013, R0 � 1:8, (dashed line), and z � 0:004, bS � 0:025, R0 � 3:4 (dotted line). All of the

other parameters are at the baseline values given in Table 1. In the infection rate plot note that the

asymptotic fraction of population being infected by each group is independent of z. The relative

importance of the di�erent groups changes drastically during the epidemic when z � 0:002 (dashed

line) and when z � 0:004 (dotted line), respectively.
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As in the DI model, the asymptotic fraction of the population infected by
each group is independent of z, although the transient dynamics are sensitive to
the partnership acquisition rates. When z is large, the ®rst (highly infectious)
group I1 progresses extremely rapidly and initially drives the epidemic. When z
is small, the early epidemic progresses much slower, and the last infected group
I4 is more important.

Comparison: Both the DI and SP models are sensitive to the assumptions
made for the probability of transmission per contact. In the absence of good
data and su�cient model complexity, this sensitivity points out one reason it is
di�cult to use models for qualitative predictions of the AIDS epidemic. This is
especially true in the early stages of the epidemic.

This sensitivity of the epidemic to the per-contact transmission probability
demonstrates how important the use of condoms and spermicides are in pre-
venting the spread of the epidemic. Decreasing z may be able to drop the ep-
idemic down below the threshold. If, as we have assumed, the number of
contacts per partner increases as the number of partners decreases, changing z
can have more impact on the spread of HIV than changing the partner ac-
quisition rate r.

We also investigate how the epidemic spreads more rapidly as the proba-
bility of transmission is increased. In the SP model, while the equilibrium
fractions infected by each group are una�ected by changes in z, as the prob-
ability of transmission increases, the ®rst group becomes even more important
to the early epidemic. The same is true as the partner acquisition rate r is in-
creased (plots not shown, see Ref. [32]). Consistent with the modeling work in
Refs. [21,30], we observed that with an r of 50, the ®rst group causes more than
90% of all early infections, although its impact quickly drops to less than 30%
at the endemic equilibrium. The impact of r on who is causing the actual in-
fections early in the epidemic is much greater for the SP model than for
the DI model, where only a small change was seen even when r was as large
as 100.

5. Summary and concluding remarks

Based on the hypothesis that HIV-1 RNA levels measured in serum and
plasma are correlated with infectiousness, two simple models were formulated
and investigated, each capturing one of the observed aspects of variations in
RNA levels. Our numerical studies use numbers which rely upon the somewhat
tenuous association between HIV RNA levels in the bloodstream and infec-
tiousness. Future studies are needed to establish this connection. It is also
important to keep in mind that although new RNA lab techniques are more
reliable than older techniques, there remain questions about their accuracy
[45].

100 J.M. Hyman et al. / Mathematical Biosciences 155 (1999) 77±109



The di�erential infectivity model, which has never been previously studied,
accounts for di�erences between individuals, and the staged-progression
model, which is similar to models previously studied, accounts for di�erences
within the same individual over the course of infection. Although, undoubt-
edly, individuals vary in infectiousness both temporally and individually, and
the most complete model should include a combination of these two hypoth-
eses, it is insightful (and more mathematically tractable) to ®rst consider them
separately.

For both models, we derived explicit formulas for their reproductive num-
bers and endemic equilibria. These formulas were expressed in a similar and
easily interpreted form for both models. For example, the reproductive number
is R0 � r �b�s for both models. We showed that if the reproductive number is less
than one, the infection-free equilibrium is the only equilibrium which is locally
asymptotically stable. If the reproductive number is greater than one, the in-
fection-free equilibrium becomes unstable, the epidemic spreads, and a unique
endemic equilibrium appears. For the DI model we showed that this endemic
equilibrium is locally asymptotically stable.

We de®ned a new quantity, the relative impact of the group, as the fraction
of new infections being caused by that group. Then, using mid range param-
eters and estimates from cohort studies, we examined the transmission dy-
namics of these two models and the relative impact of each group. Despite very
moderate choices for the partner acquisition rate and the transmission prob-
ability, both models had reproductive numbers greater than 2. We also showed
that the reproductive number and many details of the epidemic are very sen-
sitive to the transmission probability per contact.

For the DI model, and our parameter choices, the two most infectious
groups are responsible for almost all of the transmissions, despite the fact that
their life-expectancy is shorter than the other two groups. The most infectious
group, entered by only 5% upon infection, is responsible for over 40% of all
transmissions. For the SP model, those in the acute infectious phase transmit a
very large fraction of the infections despite the very short duration of this
phase. Most of the remaining infections are transmitted by those in the late
chronic stage. These conclusions about who transmits infection are robust to
changes in the probability of transmission per contact, despite the fact that the
overall epidemic is very sensitive to z.

In the absence of a vaccine, epidemiologists must rely upon e�ecting be-
havior changes and providing condoms in order to control the spread of HIV.
If infectious individuals could be identi®ed and convinced to change their
behavior, then perhaps the spread of HIV could be slowed or halted. If viral
levels indicate infectiousness, then treatment of these individuals could also
slow spreading by lowering their viral loads even when they are unwilling to
change their behavior. Ideally, all infected individuals should be identi®ed and
provided with treatments. However, screening everyone is not possible, and
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HIV is an infection which remains asymptomatic for many years, so that most
infected people do not know they are infected. Our study indicates that it is
more urgent to identify some infected individuals than others.

The DI and SP models capture two di�erent aspects of the HIV epidemic.
More signi®cantly, we believe that the two mechanisms imply di�erent things
about the best way to control the epidemic in the absence of a vaccine. In
particular, contact tracing could be very e�ective at catching the most infec-
tious individuals if a small group is responsible for most of the infections and if
that group of individuals is very infectious throughout the chronic stage. Such
superspreaders would have infected a number of partners, one of whom is
likely to identify the superspreader in an interview, thus hopefully allowing the
superspreader to be contacted and counseled and no longer spreading the virus
to others. On the other hand, if every individual is infectious for only a short
period of time at the beginning of the infection, then, by the time a person is
named by someone who has been infected, that person will already be in the
uninfectious chronic stage. In that case, awareness of the symptoms of early
acute infection might be the best way to identify people before they infect
others. Likewise, alertness to symptoms may be a fairly e�ective way, perhaps
combined with general screening programs, to identify individuals before they
enter a more infectious stage late in their infection.

There has not been space to present further examples. In a future paper [32]
we will do extensive sensitivity studies of both models to all of the parameters
and, in particular, to the migration rate and the relative infectivities of the
di�erent groups. We will also carefully address the neglected question of initial
conditions for these types of models, showing that model results can be ex-
tremely sensitive to initial conditions. We will develop a `natural initialization
procedure', that will be robust and will work for many population dynamics
models.

It is important to explore and understand the DI and SP models separately
before going to a model that has more complexity. However, the HIV RNA
data indicate that a combined model might be necessary to capture some very
important characteristics of the epidemic. This is indeed the case if we wish to
settle the question of who causes most of the infections and, thus, whether or
not contact tracing is a cost-e�ective way of controlling the HIV epidemic. In a
future paper, we plan to explore a DISP model in which the infected popula-
tion is divided into n� m groups, where n is the number of di�erent stages of
infection and m is the number of inherently di�erent groups. Note that we have
also neglected many other important features of the AIDS epidemic, such as
variations in sexual behavior, age, and inherent susceptibility.

Although in this paper we have not explored the possibility that individuals
vary inherently in their susceptibility, there is growing evidence to support this
inherent variation. Some individuals appear to be genetically immune to in-
fection [17], and others seem to be more susceptible [46]. Circumcision appears
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to decrease susceptibility in men [47], and the presence of other sexually
transmitted diseases seems to increase susceptibility [14,47]. Variations in
susceptibility should not a�ect epidemic dynamics much until an epidemic is far
advanced and the more susceptible individuals have been depleted from the
population, unless susceptibility and infectiousness are linked.

It is clear from our preliminary explorations of these two models that most
HIV infected individuals are not spreading the infection. If the subgroups that
are transmitting infection could somehow be identi®ed and convinced to re-
frain from risky behaviors, at least while they are infectious, the epidemic could
perhaps be contained. Unfortunately, if the SP model results are to be believed,
a lot of the spread occurs during the ®rst few weeks to two months after in-
fection. While a large number of infecteds have acute primary infection
symptoms, many do not. Further study with a combined model will tell us
whether this group is truly important or whether the superspreaders of the DI
model are more important.

Appendix A. The reproductive number for the DI model

The asymptotic dynamics of the infection-free equilibrium are determined
by the following submatrix in the Jacobian matrix of Eq. (1) at the infection-
free equilibrium

J :�
p1rb1 ÿ �l� m1� p1rb2 . . . p1rbn

p2rb1 p2rb2 ÿ �l� m2� . . . p2rbn

..

. ..
. . .

. ..
.

pnrb1 pnrb2 . . . pnrbn ÿ �l� mn�

0BBB@
1CCCA:

Since all o�-diagonal elements are positive, we now consider matrix ÿJ . Using
the positive vector

V :� p1

�l� m1� � � �
pn

�l� mn�
� �T

;

we have

ÿJ � V � 1

 
ÿ r
Xn

j�1

pjbj

�l� mj�

!
E;

where E � �p1; p2; . . . ; pn�T. Then it follows from M-matrix theory that each
eigenvalue of J has a negative real part if

R0 � r
Xn

j�1

pjbj

�l� mj� < 1;

which implies the infection-free equilibrium is locally asymptotically stable.

J.M. Hyman et al. / Mathematical Biosciences 155 (1999) 77±109 103



On the other hand, by mathematical induction, it can be shown that the
determinant of J equals

�ÿ1�n�1
Yn

i�1

l� mi

bi
R0� ÿ 1�:

Then, if R0 > 1, J has eigenvalues with positive real parts, which implies the
instability of the infection-free equilibrium.

Appendix B. Stability of the endemic equilibrium for the DI model

For the DI model, we establish the local stability of the endemic equilibrium
by showing that all eigenvalues of the Jacobian matrix at the endemic equi-
librium have negative real parts.

The Jacobian matrix at the endemic equilibrium has the form

J �

ÿlÿ k 1ÿ S=N� � ÿh1 ÿh2 . . . ÿhn

p1k 1ÿ S=N� � ÿ�l� m1� � p1h1 p1h2 . . . p1hn

p2k 1ÿ S=N� � p2h1 ÿ�l� m2� � p2h2 . . . p2hn

..

. ..
. ..

. . .
. ..

.

pnk 1ÿ S=N� � pnh1 pnh2 . . . ÿ�l� mn� � pnhn

0BBBBB@

1CCCCCA;

where hi :� �S=N� rbi ÿ k� �.
By the similarity matrix

M :�

1 0 0 . . . 0
p1 1 0 . . . 0
p2 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

pn 0 0 . . . 1

0BBBBB@

1CCCCCA;
J is transformed into the following matrix:

B :�

ÿlÿ k� r
R0

P
i

pibi ÿh1 ÿh2 . . . ÿhn

p1m1 ÿ�l� m1� 0 . . . 0
p2m2 0 ÿ�l� m2� . . . 0

..

. ..
. ..

. . .
. ..

.

pnmn 0 0 . . . ÿ�l� mn�

0BBBBBB@

1CCCCCCA:

Hence, matrix J has all eigenvalues with negative real parts if and only if B has
all eigenvalues with negative real parts.

Let q be an eigenvalue of B with the corresponding eigenvector
X � x0; x1; . . . ; xn� �T. Then

pjmjx0 � l
ÿ � mj � q

�
xj; j � 1; . . . ; n: �B:1�
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Solving Eq. (B.1) for xj, j � 1; . . . ; n, in terms of x0 and then substituting them
into the ®rst row of BX � qX, we arrive at

ÿlÿ k� r
R0

Xn

j�1

pjbj ÿ
1

R0

Xn

j�1

pjmj rbj ÿ k
ÿ �

l� mj � q
ÿ � � q:

Let q � u� iv. Then u and v satisfy the following equations:

u� l� kÿ r
R0

Xn

j�1

pjbj �
1

R0

Xn

j�1

pjmj rbj ÿ k
ÿ ��u� l� mj�
u� l� mj

ÿ �2 � v2
� 0; �B:2a�

1ÿ 1

R0

Xn

j�1

pjmj rbj ÿ k
ÿ �

u� l� mj

ÿ �2 � v2
� 0: �B:2b�

Now we have the following two lemmas.

Lemma B.1. Any eigenvalue of B with a non-negative real part must be a real
number.

Proof. Assume uP0 and v > 0. Then it follows from Eq. (B.2b) that

R0 � k
Xn

j�1

pjmj

u� l� mj

ÿ �2 � v2
� r
Xn

j�1

pjmjbj

u� l� mj

ÿ �2 � v2

< r
Xn

j�1

pj�l� mj�bj

u� l� mj

ÿ �2
6r
Xn

j�1

pj�l� mj�bj

�l� mj�2
� R0;

which is impossible. Hence, if uP0, v must be non-positive. However, since uÿ
iv is also an eigenvalue of B, v cannot be negative. Hence, v must be zero, and q
must be a real number. �

Lemma B.2. Matrix B has no non-negative real eigenvalue.

Proof. Matrix B has a positive real eigenvalue q � u if and only if Eq. (B.2a)
has a positive solution u while v � 0.

De®ne

F �u� :� u� l� kÿ r
R0

Xn

j�1

pjbj �
1

R0

Xn

j�1

pjmj rbj ÿ k
ÿ �

u� l� mj
:

Then

F �0� � l� kÿ r
R0

Xn

j�1

pjbj �
1

R0

Xn

j�1

pjmj rbj ÿ k
ÿ �
l� mj

Pk 1

�
ÿ 1

R0

�
> 0;

if R0 > 1.
On the other hand,
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F 0�u� � 1ÿ 1

R0

Xn

j�1

pjmj rbj ÿ k
ÿ �

u� l� mj

ÿ �2
P1ÿ r

R0

Xn

j�1

pjmjbj

u� l� mj

ÿ �2

P1ÿ r
R0

Xn

j�1

pj�l� mj�bj

u� l� mj

ÿ �2
P1ÿ r

R0

Xn

j�1

pjbj

l� mj
� 0;

for all uP0. Hence, F �u� > 0 for all uP0. That is, matrix B has no nonnegative
real eigenvalue.

Based on Lemmas B.1 and B.2, all eigenvalues of B must have negative real
parts. Then the local asymptotic stability of the endemic equilibrium of Eq. (1)
follows.

Appendix C. The endemic equilibrium for the SP model

De®ning ri � ci � l, it follows from the equations for Ii, i � 2; . . . ; n, in
Eq. (16) that

Iiÿ1 � ri

ciÿ1

Ii:

De®ne

Di :�
Qn

j�i�1 rjQnÿ1
j�i cj

:

Then

Ii � DiIn; i � 1; . . . ; nÿ 1: �C:1�
Since kS � r1I1, Sr

Pn
k�1 bkIk � Sr1I1 � r1I1

Pn
k�1 Ik. Then Sr

Pn
k�1 bkDk

� Sr1D1 � r1D1

Pn
k�1 DkIn, and hence

S � r1D1

Pn
k�1 Dk

r
Pn

k�1 bkDk ÿ r1D1

In �
Pn

k�1 Dk

�r=D1r1�
Pn

k�1 bkDk ÿ 1
In:

It can be shown that

RS
0 �

r
Pn

k�1 bkDk

r1D1

:

Then,

S �
Pn

k�1 Dk

RS
0 ÿ 1

In; �C:2�

which is positive if and only if RS
0 > 1.

On the other hand, from l�S0 ÿ S� � r1I1 � r1D1In, it follows that
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lS0 � l
Pn

k�1 Dk

RS
0 ÿ 1

�
� r1D1

�
In:

Thus

In � lS0

�lPn
k�1 Dk=RS

0 ÿ 1� � r1D1

: �C:3�

Substituting Eq. (C.3) into Eqs. (C.2) and (C.1), respectively, we can solve
for the endemic equilibrium explicitly as in Eq. (23).
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